Formula Sheet

Grade 9 Academic

Geometric Shape	Perimeter	Area
Rectangle	P = l + l + w + w	A = lw
-	or $P = 2(l + w)$	
Parallelogram	P = b + b + c + c	A = bh
$ \begin{array}{c c} & h \\ & f_c \\ & b \end{array} $	or $P = 2(b + c)$	
Triangle	P = a + b + c	$A = \frac{bh}{2}$
		or $A = \frac{1}{2}bh$
Trapezoid a	P = a + b + c + d	$A = \frac{(a+b)h}{2}$
c h d b		or $A = \frac{1}{2}(a+b)h$
Circle	$C = \pi d$	$A = \pi r^2$
	or $C = 2\pi r$	

Geometric Figure	Surface Area	Volume
Cylinder	$A_{\text{base}} = \pi r^2$ $A_{\text{lateral surface}} = 2\pi rh$	$V = (A_{\text{base}})(\text{height})$
	$A_{\text{total}} = 2A_{\text{base}} + A_{\text{lateral surface}}$ $= 2\pi r^2 + 2\pi rh$	$V = \pi r^2 h$
Sphere	$A = 4\pi r^2$	$V = \frac{4\pi r^3}{3}$ or $V = \frac{4}{3}\pi r^3$
Cone	$A_{\text{base}} = \pi r^2$ $A_{\text{lateral surface}} = \pi rs$ $A_{\text{total}} = A_{\text{base}} + A_{\text{lateral surface}}$ $= \pi r^2 + \pi rs$	$V = \frac{(A_{\text{base}})(\text{height})}{3}$ $V = \frac{\pi r^2 h}{3}$ or $V = \frac{1}{3}\pi r^2 h$
Square-based pyramid b	$A_{\text{base}} = b^2$ $A_{\text{triangle}} = \frac{bs}{2}$ $A_{\text{total}} = A_{\text{base}} + 4A_{\text{triangle}}$ $= b^2 + 2bs$	$V = \frac{(A_{\text{base}})(\text{height})}{3}$ $V = \frac{b^2 h}{3}$ or $V = \frac{1}{3}b^2 h$
Rectangular prism h l	A = 2(wh + lw + lh)	$V = (A_{\text{base}})$ (height) $V = lwh$
Triangular prism	$A_{\text{base}} = \frac{bl}{2}$ $A_{\text{rectangles}} = ah + bh + ch$ $A_{\text{total}} = 2A_{\text{base}} + A_{\text{rectangles}}$ $= bl + ah + bh + ch$	$V = (A_{\text{base}})(\text{height})$ $V = \frac{blh}{2}$ or $V = \frac{1}{2}blh$