Formula Sheet

Grade 9 Assessment of Mathematics

Geometric Shape	Perimeter	Area
Circle	$C=\pi d$ or $C=2 \pi r$	$A=\pi r^{2}$
Parallelogram	$P=b+b+c+c$ or $P=2(b+c)$	$A=b h$
Rectangle	$P=l+l+w+w$ or $P=2(l+w)$	$A=l w$
Trapezoid	$P=a+b+c+d$	$A=\frac{(a+b) h}{2}$ or $A=\frac{1}{2}(a+b) h$
Triangle	$P=a+b+c$	$A=\frac{b h}{2}$ or $A=\frac{1}{2} b h$

Geometric Object	Surface Area	Volume
Cone	$\begin{aligned} & A_{\text {base }}=\pi r^{2} \\ & A_{\text {lateral surface }}=\pi r s \\ & \begin{aligned} A_{\text {total }} & =A_{\text {base }}+A_{\text {lateral surface }} \\ & =\pi r^{2}+\pi r s \end{aligned} \end{aligned}$	$\begin{aligned} & V=\frac{\left(A_{\text {base }}\right)(\text { height })}{3} \\ & V=\frac{\pi r^{2} h}{3} \text { or } V=\frac{1}{3} \pi r^{2} h \end{aligned}$
Cube	$A=6 b^{2}$	$\begin{aligned} & V=\left(A_{\text {base }}\right)(\text { height }) \\ & V=b^{3} \end{aligned}$
Cylinder	$\begin{aligned} & A_{\text {base }}=\pi r^{2} \\ & \begin{aligned} & A_{\text {lateral surface }}=2 \pi r h \\ & A_{\text {total }}=2 A_{\text {base }}+A_{\text {lateral surface }} \\ & \quad=2 \pi r^{2}+2 \pi r h \end{aligned} \end{aligned}$	$\begin{aligned} & V=\left(A_{\text {base }}\right)(\text { height }) \\ & V=\pi r^{2} h \end{aligned}$
Rectanglebased prism	$A=2(w h+l w+l h)$	$\begin{aligned} & V=\left(A_{\text {base }}\right)(\text { height }) \\ & V=l w h \end{aligned}$
Squarebased pyramid	$\begin{aligned} & A_{\text {base }}=b^{2} \\ & A_{\text {triangle }}=\frac{b s}{2} \\ & \begin{aligned} A_{\text {total }} & =A_{\text {base }}+4 A_{\text {triangle }} \\ & =b^{2}+2 b s \end{aligned} \end{aligned}$	$\begin{aligned} & V=\frac{\left(A_{\text {base }}\right)(\text { height })}{3} \\ & V=\frac{b^{2} h}{3} \text { or } V=\frac{1}{3} b^{2} h \end{aligned}$
Trianglebased prism	$\begin{aligned} & A_{\text {base }}=\frac{b l}{2} \\ & A_{\text {rectangles }}=a h+b h+c h \\ & \begin{aligned} A_{\text {total }} & =2 A_{\text {base }}+A_{\text {rectangles }} \\ & =b l+a h+b h+c h \end{aligned} \end{aligned}$	$\begin{aligned} & V=\left(A_{\text {base }}\right)(\text { height }) \\ & V=\frac{b l h}{2} \quad \text { or } V=\frac{1}{2} b l h \end{aligned}$

