Formula Sheet

Grade 9 Assessment of Mathematics

Geometric Shape	Perimeter	Area
Rectangle	P = l + l + w + w or $P = 2(l + w)$	A = lw
Parallelogram	P = b + b + c + c or $P = 2(b + c)$	A = bh
Triangle	P = a + b + c	$A = \frac{bh}{2}$ or $A = \frac{1}{2}bh$
Trapezoid $ \begin{array}{c c} c & h & d \\ \hline b \end{array} $	P = a + b + c + d	$A = \frac{(a+b)h}{2}$ or $A = \frac{1}{2}(a+b)h$
Circle	$C = \pi d$ or $C = 2\pi r$	$A = \pi r^2$

Geometric Object	Surface Area	Volume
Cylinder	$A_{\mathrm{base}} = \pi r^2$ $A_{\mathrm{lateral\ surface}} = 2\pi r h$ $A_{\mathrm{total}} = 2A_{\mathrm{base}} + A_{\mathrm{lateral\ surface}}$ $= 2\pi r^2 + 2\pi r h$	$V = (A_{\text{base}})(\text{height})$ $V = \pi r^2 h$
Cube	$A = 6b^2$	$V = (A_{\text{base}})(\text{height})$ $V = b^3$
Cone	$A_{\mathrm{base}} = \pi r^{2}$ $A_{\mathrm{lateral\ surface}} = \pi rs$ $A_{\mathrm{total}} = A_{\mathrm{base}} + A_{\mathrm{lateral\ surface}}$ $= \pi r^{2} + \pi rs$	$V = \frac{(A_{\text{base}})(\text{height})}{3}$ $V = \frac{\pi r^2 h}{3} \text{ or } V = \frac{1}{3}\pi r^2 h$
Square- based pyramid	$A_{\text{base}} = b^{2}$ $A_{\text{triangle}} = \frac{bs}{2}$ $A_{\text{total}} = A_{\text{base}} + 4A_{\text{triangle}}$ $= b^{2} + 2bs$	$V = \frac{(A_{\text{base}})(\text{height})}{3}$ $V = \frac{b^2 h}{3} \text{or} V = \frac{1}{3}b^2 h$
Rectangle- based prism	A = 2(wh + lw + lh)	$V = (A_{\text{base}})(\text{height})$ $V = lwh$
Triangle-based prism h	$A_{\text{base}} = \frac{bl}{2}$ $A_{\text{rectangles}} = ah + bh + ch$ $A_{\text{total}} = 2A_{\text{base}} + A_{\text{rectangles}}$ $= bl + ah + bh + ch$	$V = (A_{\text{base}}) \text{(height)}$ $V = \frac{blh}{2} \text{or} V = \frac{1}{2}blh$