These Questions Can Be Used at Various Times Throughout the Year

This resource comprises five booklets. Each booklet is a compilation of all the questions in a particular strand released between 2012 and 2016. The multiple-choice questions appear first, followed by open-response. The questions are sorted according to the overall expectations in *The Ontario Curriculum, Grades 1–8: Mathematics* to which each is mapped. Detailed information about the questions, such as the year of release, the overall expectation and the category of knowledge and skills the question is mapped to, is listed after them. This detailed information also includes the answer key for each multiple-choice question. The scoring guides (with the item-specific rubric and student samples at each code) for each open-response question follow.
How to Use This Resource

Suggested uses of these booklets:

- Select specific questions by overall expectation based on student learning.
- Use the scoring guides for the open-response questions to assist students in evaluating the reasonableness and completeness of their solutions.
- Use multiple-choice questions as open-response questions, when appropriate, by not including the answer options. Students can answer the question and then discuss the steps required and other possible answers, including those arrived at through common errors. Discuss whether there are multiple methods that can be used to answer the question. Students can then compare their answer to the multiple-choice options. Encourage the students to identify ways to ensure their solution process is complete and the question is answered fully.
- Use technology in the classroom to have students record multiple-choice answers instantly, which will allow for discussion of correct answers and the common errors demonstrated by the incorrect options (along with other errors not included in these options). This discussion can lead to a deeper understanding of concepts and assist students in correcting their own misunderstandings. Another option is to have students start with the correct answer and work backward to formulate a question.
- Encourage students to use manipulatives, and model how to apply them. For example, number lines can be used with questions mapped to expectations in the Number Sense and Numeration strand as well as those mapped to other strands, such as Patterning and Algebra or Data Management and Probability.

Details of the Assessment

EQAO assessments are comparable from year to year, as they share a common structure. The blueprint, which can be found in the Framework, defines how the questions are spread throughout the curriculum. (For more information, see www.eqao.com.) EQAO releases only half of the assessment each year (and has done so since 2013), so the released questions from a particular year do not cover the full blueprint. The blueprint specifies the number and types of questions (multiple-choice or open-response) that are mapped to a particular group of expectations. Each group of expectations can consist of one or more overall expectations, which themselves include specific expectations. Although EQAO releases only the overall expectation, each question is mapped to a specific expectation. The specific expectations vary from year to year; however, some of them involve knowledge or skills that may be assessed every year, or different parts of the expectation can be assessed on a yearly basis.

The questions

- are linked to expectations in The Ontario Curriculum, which forms the basis of the programs of instruction in Ontario classrooms,
- were developed and scored by Ontario teachers and validated through use in provincial testing and
- address various mathematical processes and categories of knowledge and skills in The Ontario Curriculum.
When specific expectations are repeated, the categories of knowledge and skills the questions are mapped to can change. In the blueprint, some expectations and parts of others are set in italics, which indicates that the italicized element cannot be assessed on a large-scale assessment. EQAO’s aim is for each specific expectation (excluding the ones set completely in italics) to have at least one question mapped to it every five years.

Each question is also mapped to a category of knowledge and skills. EQAO maps multiple-choice questions to the Knowledge and Understanding, Application and Thinking categories. Open-response questions are mapped to either Application or Thinking. EQAO does not map any questions to the category Communication, but teachers can evaluate this skill through any open-response questions where students need to show their work or justify their answer.

There are multiple-choice questions on the primary-division assessment that do not permit students to use a calculator or manipulatives when answering them. These questions are mapped only to certain expectations in the Number Sense and Numeration and the Patterning and Algebra strands and can be found at the beginning of these booklets.

EQAO’s Definitions of the Categories of Knowledge and Skills

EQAO has adapted the definitions of the categories of knowledge and skills from the achievement chart found in The Ontario Curriculum. These definitions assist EQAO in mapping questions.

A question is mapped to the category of Knowledge and Understanding if students must demonstrate only subject-specific content (knowledge) or comprehension of its meaning and significance (understanding), or both, in order to answer the question. These questions assess basic knowledge or understanding of concepts.

A question is mapped to the category Application if students must select the appropriate tool or get the necessary information and “fit” it to the problem. A question may change from Knowledge and Understanding to Application if context is added.

Questions that require students either to select and sequence a variety of tools or to demonstrate a critical thinking process (e.g., reasoning) are mapped to the category Thinking. Consider whether students need to make a plan to answer the question. Thinking questions require students to select more than one tool and sequence them (e.g., add first then subtract) or use reasoning to determine the answer. There may be more than one way to answer these questions.

Questions where students need to select one tool and use it repeatedly (without any sequencing of tools) are usually mapped to the category Application. However, the selection of a tool, its use more than once and the addition or subtraction of the results requires a plan. Questions requiring such a plan are generally mapped to the category Thinking.

The category and specific expectation each question is mapped to is confirmed by many Ontario educators, including the question writer, review committees and an expert reviewer. In the classroom, these questions can be mapped to a category based on the knowledge and skills the students currently have. If students have never been taught a specific skill, the question could be mapped to Application or even Thinking; however, after they are taught the skill, it could be mapped to Knowledge and Understanding or Application.

As the EQAO assessment is written near the end of the school year, it assumes that students have been taught the knowledge and skills outlined in the curriculum for the year.
Here are some examples to help distinguish the different categories of knowledge and skills questions are mapped to.

Example 1:
When two multiple-choice questions are similar, the answer options can influence the category of knowledge and skills the question is mapped to.

VERSION 1

What is 79 + 22?

a 91
b 101
c 191
d 911

VERSION 2

Which of these expressions represents the answer to 79 + 22?

a 70 + 20 + 11
b 70 + 20 + 1
c 90 + 2
d 90 + 7

Example 2:
When the answer options are similar, the question can be changed to influence the category of knowledge and skills.

VERSION 1

Which number pattern shows adding 5 each time?

a 9, 14, 19, 24, 29,…
b 9, 13, 17, 21, 25,…
c 37, 32, 27, 22, 17,…
d 37, 33, 29, 25, 21,…

VERSION 2

For version 2, the answer options have changed the category, as students need to consider the expressions and determine which one represents the same value. They may determine that 79 is 70 + 9 and that 22 is 20 + 2 and then determine that 9 + 2 is 11. This question is mapped to the category **Application** based on the options provided.

(correct answer: a)
Example 2 (continued)

VERSION 2a

Three numbers are missing in this pattern. The pattern is increasing by the same amount each time. What are the three missing numbers?

9, 14, 19, __, __, __, 39

a 20, 21, 22
b 24, 34, 44
c 24, 29, 34
d 29, 39, 49

VERSION 2b

This pattern is increasing by the same amount each time.

19, 24, 29, 34, 39,…

What are the next two terms of this pattern?

a 41, 43
b 44, 49
c 44, 54
d 49, 59

VERSION 3

Ivy writes the first five numbers of her pattern:

25, 27, 29, 31, 33,…

Her pattern continues to increase by the same amount each time.

Corey writes the first five numbers of his pattern:

1, 8, 15, 22, 29,…

His pattern continues to increase by the same amount each time.

What number is in both of their patterns?

a 35
b 36
c 37
d 43

VERSION 2a and 2b

Versions 2a and 2b are mapped to the category Application.

In both versions, the pattern rule is not given, and students are required to determine the amount by which the pattern is increasing. Students can determine the missing numbers and then find them in the options, or they can try each option and see which one works in the pattern.

(correct answer for version 2a: c)
(correct answer for version 2b: b)

VERSION 3

This version requires a plan. Students must first determine the amount each pattern is increasing by and then extend the pattern using the appropriate pattern rule. After, the student must identify a number common to both patterns. If there is no common number, they will need to extend one or both patterns further. This question is mapped to the category Thinking.

(correct answer: d)
Example 3:

Multiple-choice and open-response questions can be mapped to the category of **Thinking**.

VERSION 1

Look at the grid and shape below.

![Grid and shape](image)

How many of the shapes are needed to cover the grid, with no gaps or overlaps?

- a 6
- b 8
- c 12
- d 24

VERSION 2

Two playgrounds are pictured below.

![Playgrounds](image)

Determine how much larger the area of Playground A is than the area of Playground B.

Show your work.

Playground A is _____ square units larger than Playground B.
INSTRUCTIONS

Answering Multiple-Choice Questions

Like this: ● Not like this: ✗ ✅ ☹ ●

• Use a pencil only.
• Fill only one circle for each question.
• Fill the circle completely.
• Cleanly erase any answer you wish to change.

Answering Open-Response Questions

• Write on the space provided in this booklet.
You may use a calculator and/or manipulatives.
1. Which is the best estimate of the height from the floor to the doorknob on a classroom door?
 - 1 cm
 - 9 cm
 - 10 cm
 - 90 cm

2. What time does the digital clock pictured below show?
 - Twenty-five minutes to five o’clock
 - Twenty-five minutes to four o’clock
 - Thirty-five minutes to four o’clock
 - Thirty-five minutes to five o’clock

3. Look at the time shown in the box below.
 - 11:40

 Which of the following clocks shows the same time as the time in the box?
4 Which clock shows ten minutes past five o’clock?

- ○
- ○
- ●
- ○

5 Look at the square below.

What is the perimeter of this square?

- ○ 6 cm
- ○ 12 cm
- ○ 24 cm
- ○ 36 cm

6 What is the perimeter of the shape below?

- ○ 16 units
- ○ 14 units
- ○ 8 units
- ○ 7 units
7 Marissa and Kara each draw a rectangle.

Marissa

Kara

1 unit

Whose rectangle has the greater perimeter and by how much?

- Kara’s, by 1 unit
- Kara’s, by 16 units
- Marissa’s, by 2 units
- Marissa’s, by 18 units

8 Katherine draws the grey shape on the grid below.

1 square unit

What is the area of the grey shape?

- 10 square units
- 13 square units
- 20 square units
- 36 square units
9 A park has 4 sections as shown on the grid below.

Which section has an area of 11 square units?

- pool
- playground
- paved section
- picnic section

10 What is the area of this triangle?

- 15 square units
- 17 square units
- 18 square units
- 21 square units
11 Which of the following has a mass of less than 1 kilogram?

- a bicycle
- a beachball
- a television
- a teacher’s desk

12 When the container pictured below is full, it can hold 1 L of liquid.

[Image of a container]

About how much liquid is shown in the container?

- one litre
- one-half of a litre
- one-quarter of a litre
- three-quarters of a litre

13 Which is the most appropriate unit to measure the length of a school bus?

- metre
- kilogram
- kilometre
- centimetre

14 Which is the most appropriate unit to measure the width of a gym?

- metre
- kilogram
- kilometre
- centimetre

15 Which of the following is the most appropriate unit to measure the distance between Ottawa and Toronto?

- litre
- metre
- kilogram
- kilometre
16. Which measurement is the longest?

- 1 m
- 21 m
- 36 cm
- 1 m 8 cm

17. Which list shows the lengths from shortest to longest?

- 2 m; 50 m; 300 cm
- 50 m; 300 cm; 2 m
- 300 cm; 50 m; 2 m
- 2 m; 300 cm; 50 m

18. The table below shows information about 3 students.

<table>
<thead>
<tr>
<th>Name</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Himal</td>
<td>107 cm</td>
</tr>
<tr>
<td>Greg</td>
<td>1 m 9 cm</td>
</tr>
<tr>
<td>Abe</td>
<td>?</td>
</tr>
</tbody>
</table>

Abe is the tallest of the 3 students by 5 cm.

What is Abe’s height?

- 109 cm
- 114 cm
- 1 m 7 cm
- 1 m 12 cm
19 Sammy joins 3 pieces of wood to make the 2 m bridge between these two desks.

![Image of a bridge between two desks with a 2 m measurement]

The first piece is 70 cm. What could the measurements of the other 2 pieces be?

- 10 cm and 20 cm
- 50 cm and 50 cm
- 70 cm and 50 cm
- 80 cm and 50 cm

20 Look at the grid and the shape below.

![Image of a grid and a shape]

How many of the shapes are needed to cover the grid, with no gaps or overlaps?

- 6
- 8
- 12
- 24
21. Joel helps his mom for 1 hour. For how many minutes does Joel help his mom?

- 24
- 30
- 60
- 100

22. Noah practises soccer for a total of 2 hours each week. Which of the following shows the number of minutes Noah practises soccer each week?

- 12 + 12
- 24 + 24
- 60 + 60
- 100 + 100

23. How many hours is 240 minutes?

- 2 hours
- 3 hours
- 4 hours
- 5 hours

24. February 16th is circled on the calendar below.

<table>
<thead>
<tr>
<th>February</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>March</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>25</td>
</tr>
</tbody>
</table>

What date is 3 weeks and 2 days from February 16th?

- March 9th
- March 10th
- March 11th
- March 12th
Janelle needs 5 m of string for an art project. She already has 325 cm of string.

What is the length of string Janelle still needs?

Show your work.

Janelle needs ______________ more string.
Two playgrounds are pictured below.

Playground A

Playground B

1 square unit

Determine how much larger the area of Playground A is than the area of Playground B.

Show your work.

Playground A is _________ square units larger than Playground B.
Deepak reads for 30 minutes each night before bed. After 2 weeks, has Deepak read for more than 6 hours?

Circle one: Yes No

Justify your answer.
Measurement

Multiple-Choice Questions

<table>
<thead>
<tr>
<th>QUESTION NUMBER</th>
<th>YEAR QUESTION RELEASED</th>
<th>OVERALL EXPECTATION*</th>
<th>COGNITIVE SKILL</th>
<th>KEY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2012</td>
<td>1</td>
<td>KU</td>
<td>d</td>
</tr>
<tr>
<td>2</td>
<td>2013</td>
<td>1</td>
<td>KU</td>
<td>a</td>
</tr>
<tr>
<td>3</td>
<td>2012</td>
<td>1</td>
<td>KU</td>
<td>a</td>
</tr>
<tr>
<td>4</td>
<td>2016</td>
<td>1</td>
<td>KU</td>
<td>c</td>
</tr>
<tr>
<td>5</td>
<td>2012</td>
<td>1</td>
<td>AP</td>
<td>c</td>
</tr>
<tr>
<td>6</td>
<td>2015</td>
<td>1</td>
<td>AP</td>
<td>a</td>
</tr>
<tr>
<td>7</td>
<td>2014</td>
<td>1</td>
<td>AP</td>
<td>c</td>
</tr>
<tr>
<td>8</td>
<td>2012</td>
<td>1</td>
<td>AP</td>
<td>b</td>
</tr>
<tr>
<td>9</td>
<td>2013</td>
<td>1</td>
<td>AP</td>
<td>b</td>
</tr>
<tr>
<td>10</td>
<td>2016</td>
<td>1</td>
<td>AP</td>
<td>c</td>
</tr>
<tr>
<td>11</td>
<td>2014</td>
<td>1</td>
<td>KU</td>
<td>b</td>
</tr>
<tr>
<td>12</td>
<td>2015</td>
<td>1</td>
<td>KU</td>
<td>d</td>
</tr>
<tr>
<td>13</td>
<td>2012</td>
<td>2</td>
<td>KU</td>
<td>a</td>
</tr>
<tr>
<td>14</td>
<td>2014</td>
<td>2</td>
<td>KU</td>
<td>a</td>
</tr>
<tr>
<td>15</td>
<td>2015</td>
<td>2</td>
<td>KU</td>
<td>d</td>
</tr>
<tr>
<td>16</td>
<td>2016</td>
<td>2</td>
<td>KU</td>
<td>b</td>
</tr>
<tr>
<td>17</td>
<td>2012</td>
<td>2</td>
<td>AP</td>
<td>d</td>
</tr>
<tr>
<td>18</td>
<td>2014</td>
<td>2</td>
<td>TH</td>
<td>b</td>
</tr>
<tr>
<td>19</td>
<td>2016</td>
<td>2</td>
<td>TH</td>
<td>d</td>
</tr>
<tr>
<td>20</td>
<td>2012</td>
<td>2</td>
<td>TH</td>
<td>b</td>
</tr>
<tr>
<td>21</td>
<td>2012</td>
<td>2</td>
<td>KU</td>
<td>c</td>
</tr>
<tr>
<td>22</td>
<td>2013</td>
<td>2</td>
<td>KU</td>
<td>c</td>
</tr>
<tr>
<td>23</td>
<td>2015</td>
<td>2</td>
<td>AP</td>
<td>c</td>
</tr>
<tr>
<td>24</td>
<td>2013</td>
<td>2</td>
<td>AP</td>
<td>c</td>
</tr>
</tbody>
</table>

Open-Response Questions

<table>
<thead>
<tr>
<th>QUESTION NUMBER</th>
<th>YEAR QUESTION RELEASED</th>
<th>OVERALL EXPECTATION*</th>
<th>COGNITIVE SKILL</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>2013</td>
<td>2</td>
<td>TH</td>
</tr>
<tr>
<td>26</td>
<td>2015</td>
<td>2</td>
<td>TH</td>
</tr>
<tr>
<td>27</td>
<td>2012</td>
<td>2</td>
<td>TH</td>
</tr>
</tbody>
</table>

Legend

- **Cognitive Skill**
 - **KU** | Knowledge and Understanding
 - **AP** | Application
 - **TH** | Thinking

This is the number of the overall expectation in the Measurement strand that the question is mapped to. The overall expectations are numbered according to the order in which they appear in The Ontario Curriculum.
Primary Division

Grade 3

Open-Response Questions

Item-specific rubrics and sample student responses with annotations

OPEN-RESPONSE QUESTIONS 25 TO 27
Question 25

<table>
<thead>
<tr>
<th>Code</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>• Blank: nothing written or drawn in response to the question</td>
</tr>
</tbody>
</table>
| I | • Illegible: cannot be read; completely crossed out/erased; not written in English
• Irrelevant content: does not attempt assigned question (e.g., comment on the task, drawings, “?” , “!” , “I don’t know”)
• Off topic: no relationship of written work to the question |
| 10 | Thinking process to compare lengths and determine the length of string Janelle still needs shows limited effectiveness due to
• minimal evidence of a solution process
• limited identification of important elements of the problem
• too much emphasis on unimportant elements of the problem
• no conclusions presented
• conclusion presented without supporting evidence |
| 20 | Thinking process to compare lengths and determine the length of string Janelle still needs shows some effectiveness due to
• an incomplete solution process
• identification of some of the important elements of the problem
• some understanding of the relationships between important elements of the problem
• simple conclusions with little supporting evidence |
| 30 | Thinking process to compare lengths and determine the length of string Janelle still needs shows considerable effectiveness due to
• a solution process that is nearly complete
• identification of most of the important elements of the problem
• a considerable understanding of the relationships between important elements of the problem
• appropriate conclusions with supporting evidence |
| 40 | Thinking process to compare lengths and determine the length of string Janelle still needs shows a high degree of effectiveness due to
• a complete solution process
• identification of all important elements of the problem
• a thorough understanding of the relationships between all of the important elements of the problem
• appropriate conclusions with thorough and insightful supporting evidence |
Janelle needs 5 m of string for an art project. She already has 325 cm of string. What is the length of string Janelle still needs?

Show your work. Janelle needs 330 cm of string because 325 cm + 5 cm = 330 cm and I even used a calculator to help me and it gave the same answer.

325 cm + 5 cm = 330

Janelle needs 330 more string.

Annotation:
Response demonstrates limited identification of important elements of the problem; shows addition of 325 cm and 5 cm to get an incorrect answer of 330 cm.
Janelle needs 5 m of string for an art project. She already has 325 cm of string.

What is the length of string Janelle still needs?

Show your work.

\[
\begin{align*}
500 \text{ cm} + 325 \text{ cm} = 825 \text{ cm}
\end{align*}
\]

Janelle needs 825 cm more string.

Annotation:
Response demonstrates identification of some of the important elements of the problem; represents 5 m as 500 cm but incorrectly shows addition of 325 cm (the string Janelle already has) and 500 cm to get an incorrect answer of 825 cm.
Janelle needs 5 m of string for an art project. She already has 325 cm of string. What is the length of string Janelle still needs? Show your work.

\[
\begin{array}{c}
500 \\
-325 \\
\hline
175
\end{array}
\]

Janelle needs 175 more string.

Annotation: Response demonstrates a solution process that is nearly complete; represents 5 m as 500 and shows subtraction of 325 (the string Janelle already has) from 500 to get a correct answer of 175 but no units shown in totals.
Question 25

Code 40

Janelle needs 5 m of string for an art project. She already has 325 cm of string. What is the length of string Janelle still needs? Show your work.

She needs 175 cm more string.

11
325
+
175
500

Janelle needs 175 cm more string.

Annotation:
Response demonstrates a complete solution process; represents 5 m as 500 and shows total amount of string required (175 cm) to total 5 m.
Question 26

<table>
<thead>
<tr>
<th>Code</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>• Blank: nothing written or drawn in response to the question</td>
</tr>
</tbody>
</table>
| I | • Illegible: cannot be read; completely crossed out/erased; not written in English
• Irrelevant content: does not attempt assigned question (e.g., comment on the task, drawings, “?” , “!” , “I don’t know”)
• Off topic: no relationship of written work to the question |

Thinking process to determine how much larger the area of Playground A is than the area of Playground B shows limited effectiveness due to
• minimal evidence of a solution process
• limited identification of important elements of the problem
• too much emphasis on unimportant elements of the problem
• no conclusions presented
• conclusion presented without supporting evidence

Thinking process to determine how much larger the area of Playground A is than the area of Playground B shows some effectiveness due to
• an incomplete solution process
• identification of some of the important elements of the problem
• some understanding of the relationships between important elements of the problem
• simple conclusions with little supporting evidence

Thinking process to determine how much larger the area of Playground A is than the area of Playground B shows considerable effectiveness due to
• a solution process that is nearly complete
• identification of most of the important elements of the problem
• a considerable understanding of the relationships between important elements of the problem
• appropriate conclusions with supporting evidence

Thinking process to determine how much larger the area of Playground A is than the area of Playground B shows a high degree of effectiveness due to
• a complete solution process
• identification of all important elements of the problem
• a thorough understanding of the relationships between all of the important elements of the problem
• appropriate conclusions with thorough and insightful supporting evidence
Two playgrounds are pictured below.

Playground A

Playground B

1 square unit

Determine how much larger the area of Playground A is than the area of Playground B.

Show your work.

because A took more space than B

Playground A is ___26___ square units larger than Playground B.

Annotation:
Response demonstrates minimal evidence of a solution process; no totals shown for either playground (26 is not the correct area for either playground) with incorrect conclusion (26).
Two playgrounds are pictured below.

Determine how much larger the area of Playground A is than the area of Playground B.

Show your work.

Playground A is bigger because 23 units and Playground B has 20.

Playground A is \(23 \) square units larger than Playground B.

Annotation:
Response demonstrates some understanding of the relationships between important elements of the problem; correctly determines the area of one playground (20 for Playground B) with incorrect conclusion (difference not calculated).
Two playgrounds are pictured below.

Playground A

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

1 square unit

25

Playground B

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

20

Determine how much larger the area of Playground A is than the area of Playground B.

Show your work.

We counted 1

Playground A is 5 square units larger than Playground B.

Annotation:
Response demonstrates a considerable understanding of the relationships between important elements of the problem; correctly determines the area of one playground (20 for Playground B) and correct conclusion based on error (5).
Question 26

Two playgrounds are pictured below.

Playground A

1 square unit

Playground B

20

Determine how much larger the area of Playground A is than the area of Playground B.

Show your work.

Playground A is ______ square units larger than Playground B.

Annotation:
Response demonstrates identification of all important elements of the problem; correctly determines the areas for both playgrounds (24 and 20) with correct difference (4) shown.
<table>
<thead>
<tr>
<th>Code</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>• Blank: nothing written or drawn in response to the question</td>
</tr>
</tbody>
</table>
| I | • Illegible: cannot be read; completely crossed out/erased; not written in English
• Irrelevant content: does not attempt assigned question (e.g., comment on the task, drawings, “?””, “!””, “I don’t know”)
• Off topic: no relationship of written work to the question |
| 10 | Problem-solving process to determine the relationships between minutes and hours and days and weeks shows limited effectiveness due to
• minimal evidence of a solution process
• limited identification of important elements of the problem
• too much emphasis on unimportant elements of the problem
• no conclusions presented
• conclusion presented without supporting evidence |
| 20 | Problem-solving process to determine the relationships between minutes and hours and days and weeks shows some effectiveness due to
• an incomplete solution process
• identification of some of the important elements of the problem
• some understanding of the relationships between important elements of the problem
• simple conclusions with little supporting evidence |
| 30 | Problem-solving process to determine the relationships between minutes and hours and days and weeks shows considerable effectiveness due to
• a solution process that is nearly complete
• identification of most of the important elements of the problem
• a considerable understanding of the relationships between important elements of the problem
• appropriate conclusions with supporting evidence |
| 40 | Problem-solving process to determine the relationships between minutes and hours and days and weeks shows a high degree of effectiveness due to
• a complete solution process
• identification of all important elements of the problem
• a thorough understanding of the relationships between all of the important elements of the problem
• appropriate conclusions with thorough and insightful supporting evidence |
Question 27

Code 10

Deepak reads for 30 minutes each night before bed. After 2 weeks, has Deepak read for more than 6 hours?

Circle one: Yes No

Justify your answer.

\[
\begin{align*}
18 + 24 & = 42 \\
30 \times 6 & = 180 \\
18 + 24 & = 42
\end{align*}
\]

I know because I added and go 42 hours.

Annotation:
Response demonstrates too much emphasis on unimportant elements of the problem; 30 is added six times to arrive at an incorrect total of 18 and then 18 is added to 24 to arrive at an incorrect answer of 42 hours.
Question 27

Code 20

Deepak reads for 30 minutes each night before bed. After 2 weeks, has Deepak read for more than 6 hours?

Circle one: Yes No

Justify your answer.

Duration in minutes:
- Monday: 30
- Tuesday: 60
- Wednesday: 90
- Thursday: 120
- Friday: 150
- Saturday: 180
- Sunday: 210

Yes, he reads more than 6 hours.

Annotation:
Response demonstrates an incomplete solution process; evidence of understanding 7 days in 1 week (lists days) but no evidence of understanding 60 minutes in one hour and no total minutes for 2 weeks and although conclusion is correct, no justification of why 210 minutes is more than 6 hours.
Question 27

Code 30

Deepak reads for 30 minutes each night before bed. After 2 weeks, has Deepak read for more than 6 hours?

Circle one: Yes No

Justify your answer.

\[
\begin{align*}
30 + 30 &= 60 \\
30 + 30 &= 60 \\
30 + 30 &= 60 \\
30 + 30 &= 60 \\
30 + 30 &= 60 \\
30 + 30 &= 60
\end{align*}
\]

Annotation:
Response demonstrates a considerable understanding of the relationships between important elements of the problem; evidence of understanding 14 days in 2 weeks (fourteen 30s) and shows 7 groups of 60 with correct conclusion but no connection between the 7 groups of 60 and 6 hours.
Question 27

Code 40

Deepak reads for 30 minutes each night before bed. After 2 weeks, has Deepak read for more than 6 hours?

Circle one: Yes No

Justify your answer.

1 hour
30 30

Yes

Yes Deepak did read for more than 6 hours.

1 hour + 1 hour

7 hours

Annotation:
Response demonstrates a complete solution process; evidence of understanding 14 days in 2 weeks (fourteen 30s) and 60 minutes in one hour (circles) with correct conclusion and with justification showing total for number of hours read (7 hours) and comparison to 6 hours.